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Abstract

Cecropia glazioui Sneth has been used in most Latin American countries as an antihypertensive, cardiotonic, and antiasthmatic folk

medicine. In the cardiovascular studies to define its antihypertensive action it was noteworthy that animals treated with the aqueous extract

(AE) of C. glazioui were much calmer than control animals. That observation prompted the present study, aimed at an investigation of the

effects of AE and of two semipurified fractions on mouse behavior as evaluated in the elevated plus-maze test (EPM). Male adult Swiss mice

were treated with AE (0.25–1 g/kg po) acutely (1 h) or repeatedly (24, 7, and 1.5 h before the test). After repeated administration of AE, the

frequency of entries in the open arms of EPM was increased threefold. A similar profile of action was observed after treatment with the

butanolic fraction (Fbut) but not with the aqueous fraction (Faq). These findings suggest that the AE of C. glazioui promotes an anxiolytic-

like effect in mice. The active principles responsible for this action are present in the less polar fraction of the extract, the main constituents of

which are flavonoids and terpenes, among other compounds. D 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Anxiety is a common psychopathology that in adulthood

affects 1 in 5 Western women and 1 in 10 men, most of

whom are prescribed benzodiazepines for treatment (Braw-

man-Mintzer and Lydiard, 1997). Benzodiazepines have

been extensively used for the last 40 years to treat several

forms of anxiety (Jordan et al., 1996; Rickels and Schwe-

izer, 1997) and, although these compounds have well-

known benefits, their side-effects are prominent, including

sedation, muscle-relaxation, ethanol potentiation, anterog-

rade amnesia, and pharmacological dependence (Jordan

et al., 1996). In the search for an alternative, more specific,

and perhaps cost-free therapy, research has been conducted

to investigate natural anxiolytic drugs as well as new

depressant principles (Luk et al., 1983; Nielsen et al.,

1988; Medina et al., 1990, 1991; Picq et al., 1991; Marder

et al., 1996; Haberlein et al., 1994; Viola et al., 1994, 1995;

Wolfman et al., 1994; Okuyama et al., 1996). Plants have

long been used to treat central nervous system (CNS)

disorders. Folk medicine particularly values, for example,

plants that ‘‘calm down,’’ tranquilize, and raise mood, such

as Passiflora coerulea (Medina et al., 1990), Valeriana

officinalis (Santos et al., 1994a,b; Cavadas et al., 1995),

Matricaria recutita (Viola et al., 1995), Jatropa cilliata

(Okuyama et al., 1996), Salvia guaranitica (Marder et al.,

1996), Tilia tormentosa (Viola et al., 1994), and Tilia

europeae (Cavadas et al., 1997).

Cecropia glazioui Sneth (Moraceae) is popularly named

‘‘embaúba’’ in Brazil. There are ethno-pharmacological

reports in tropical and subtropical Latin America of the

plant being used as an antihypertensive, cardiotonic, and

antiasthmatic remedy (Pio Correa, 1984; Simões et al.,

1986; Di Stasi et al., 1989; Matos, 1991). These folk
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indications have been scientifically investigated in the last

10 years, mainly with regard to the plant’s cardiovascular

actions (Vidrio et al., 1982; Nicolau et al., 1988; Borges,

1992; Borges et al., 1990; Cysneiros, 1996). It has been

shown that the antihypertensive/hypotensive action may be

related to blockade of voltage-gated calcium channels in

vascular smooth muscle (Cysneiros, 1996; Cysneiros et al.,

1994, 1995; Lapa et al., 1999), whereas the positive

inotropic/chronotropic and broncho-relaxant effects seem

to be produced by a b-adrenergic activity (Cysneiros

et al., 1996).

During experiments in which the tail blood pressure was

being recorded in rats chronically treated with C. glazioui it

was noteworthy that the animals were much calmer than the

control water-treated rats (Lapa et al., 1999). They were

easy to handle although no hindrance of movements or

depression could be detected. Anecdotal reports of a ‘tran-

quilizer’ effect of C. glazioui are uncommon, although no

systematic studies of the central effects have been reported

yet. These observations prompted us to study the effects of

C. glazioui upon the CNS. The present study aimed to

investigate the putative anxiolytic-like activity of the aque-

Fig. 1. Effect of a single-dose oral treatment with the AE ofC. glazioui Sneth

on plus-maze test performance in mice. Percentage of entries and time spent

in open arms (open/total� 100) is shown. AE was administered per os.

Diazepam 1 mg/kg (DZP) and its control solution were administered

intraperitoneally. Bars and vertical lines represent the means and S.E.M. of

each group. **P< .01; *P < .05 compared to control groups (ANOVA

followed by Bonferroni’s test, except for diazepam, for which nonpaired

Student’s t test was used).

Table 1

Effects of a single-dose treatment with the AE of C. glazioui Sneth (0.25–1.0 g/kg po) upon the behavioral parameters recorded in the plus-maze in mice

Plus-maze measure Vehicle AE (0.25 g/kg) AE (0.5 g/kg) AE (1.0 g/kg) F(3,59)

Total arm entries 7.1 ± 0.78 6.1 ± 0.82 7.5 ± 0.61 8.3 ± 0.83 1.442

Closed-arm entries 5.9 ± 0.64 5.06 ± 0.57 5.5 ± 0.36 5.9 ± 0.45 0.6434

Closed-arm time (s) 196 ± 13.04 194.7 ± 13.66 179.4 ± 11.69 177.9 ± 13.40 0.5549

Central time (s) 78.6 ± 10.07 91.4 ± 14.03 87.5 ± 13.04 96.1 ± 12.19 0.3533

HD 7.9 ± 1.20 10.1 ± 2.00 11.2 ± 1.69 12.3 ± 1.21 1.623

Rearing 12.7 ± 1.22 11.4 ± 0.95 11.8 ± 1.25 12.3 ± 1.21 0.2284

SAP 20.0 ± 2.0 18.0 ± 1.69 19.2 ± 2.04 17.9 ± 1.61 0.3032

Grooming 0.8 ± 0.17 1.2 ± 0.33 1.12 ± 0.29 0.8 ± 0.30 0.6453

Fecal boli 1.2 ± 0.55 0.7 ± 0.25 1.2 ± 0.46 0.8 ± 0.34 0.3897

Number of animals 16 16 16 15 –

Data are expressed as mean ± S.E.M.

All comparisons were made with ANOVA followed by Bonferroni’s test.

Table 2

Effects of a single-dose treatment with the reference drug diazepam (1.0 mg/

kg ip) upon the behavioral parameters recorded in the plus-maze in mice

Plus-maze measures Vehicle

Diazepam

(1 mg/kg) t (14)

Total arm entries 9.0 ± 1.74 20.0 ± 2.07** 4.065

Closed-arm entries 7.1 ± 1.20 11.9 ± 1.56* 2.397

Closed-arm time (s) 183.5 ± 11.68 108.5 ± 1.56** 4.564

Central time (s) 102.1 ± 8.48 102.2 ± 19.11 0.0059

HD 10.9 ± 1.61 33.8 ± 5.06** 4.309

Rearing 14.8 ± 1.98 13.1 ± 2.18 0.5514

SAP 20.0 ± 1.18 10.9 ± 2.26** 3.166

Grooming 0.9 ± 0.23 1.5 ± 0.38 1.418

Fecal boli 0.2 ± 0.25 0.4 ± 0.38 0.2774

Number of animals 8 8 –

Data are expressed as mean ± S.E.M.

* P < .05 compared to control group; nonpaired Student’s t test.

** P < .01 compared to control group; nonpaired Student’s t test.

F.F. Rocha et al. / Pharmacology, Biochemistry and Behavior 71 (2002) 183–190184



ous extract (AE) and two semipurified fractions obtained

from C. glazioui. The plus-maze test in mice was selected to

evaluate the CNS effect.

2. Method

2.1. Animals

Male adult Swiss mice weighing 30–35 g were used in all

experiments. Animals were maintained on a 12-h light–dark

cycle (lights on at 7:00 a.m.) at constant room temperature

(23 ± 2 �C). Mice were housed in groups (20 per cage) and

had free access to food and water, except during the experi-

ments. All animals were allowed to adapt to the laboratory

conditions for at least 1 week before the beginning of the

experiments. Each animal was used just once. All experi-

ments were conducted in accordance with international stand-

ards of animal welfare recommended by the Brazilian Society

of Neuroscience and Behavior (Act 1992) and approved by

the University Committee for Animal Care in Research. The

minimum number of animals and duration of observation

required to obtain consistent data were employed.

2.2. Drugs

Diazepam (Dienpax, Sanofi-Winthrop Lab., Brazil) was

used as a reference drug (positive control). It was dissolved

in saline (0.9% NaCl) immediately before intraperitoneal

(ip) injection.

2.3. Botanical material

The leaves of C. glazioui Sneth were obtained from a

controlled plantation at the farm of CPQBA, an interdiscip-

linary research center at the University of Campinas

(São Paulo, Brazil). The harvest was directed by Dr. P.M.

Magalhães and Dr. I. Montanari who were also responsible

for the plant identification and stabilization. A voucher

specimen is deposited at that university.

2.4. Extraction and purification

The extract of C. glazioui was prepared as described by

folk medicine. The ground dried leaves were extracted in

hot water (2.5%, 72 �C) for 30 min (yield 10%). The AE

Fig. 2. Effect of the oral treatment with repeated doses (three doses in 24 h)

of the AE of C. glazioui Sneth on plus-maze test performance in mice.

Percentage of entries and time spent in the open arms (open/total� 100) is

shown. AE was administered per os. Bars and vertical lines represent the

means and S.E.M. of each group. **P< .01; *P < .05 compared to control

groups (ANOVA followed by Bonferroni’s test).

Table 3

Behavioral parameters recorded in the plus-maze from mice treated with repeated doses of the AE of C. glazioui Sneth (0.25–1.0 g/kg po)

Plus-maze measures Vehicle AE (0.25 g/kg) AE (0.5 g/kg) AE (1.0 g/kg) F(3,38)

Total arm entries 9.3 ± 0.87 10.3 ± 1.15 9.6 ± 1.14 12.1 ± 1.76 0.9640

Closed-arm entries 5.9 ± 0.79 7.7 ± 0.60 5.2 ± 0.58 6.3 ± 1.03 1.893

Closed-arm time (s) 183.9 ± 17.42 178.1 ± 15.64 200.8 ± 14.69 168.3 ± 16.31 0.7728

Central time (s) 83.7 ± 9.79 91.7 ± 11.85 47.2 ± 5.39* 52.7 ± 7.40* 6.592

HD 11.7 ± 1.56 10.9 ± 1.99 13.7 ± 2.82 15.7 ± 2.65 0.7824

Rearing 11.9 ± 1.80 12.2 ± 1.16 12.2 ± 0.99 11.3 ± 1.34 0.09627

SAP 16.5 ± 2.36 17.5 ± 2.32 11.8 ± 1.14 9.8 ± 2.31 3.256

Grooming 1.1 ± 0.31 1.1 ± 0.35 1.91 ± 0.54 1.4 ± 0.30 0.9441

Fecal boli 0.5 ± 0.34 0.8 ± 0.47 0.4 ± 0.15 0.6 ± 0.30 0.2658

Number of animals 10 10 12 10 –

Data are expressed as mean ± S.E.M.

* P< .05 compared to control group; ANOVA followed by Bonferroni’s test.
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was concentrated under vacuum to one fifth of its original

volume and freeze-dried. The concentrated AE (200 ml) was

partitioned with n-butanol (200 ml) and the resulting buta-

nolic (Fbut; yield 10%) and aqueous (Faq; yield 12%)

fractions were concentrated under vacuum and freeze-dried.

To control the quality of all plant preparations, each extract

or fraction was analyzed by high-pressure liquid chromato-

graphy (HPLC) using known chemical constituents of the

plant as chemical markers. All the extracts were freshly

resuspended in tap water to be administered per os (po).

2.5. Behavioral testing

The elevated plus-maze (EPM) was slightly modified

from that used by Lister (1987). It consisted of two

open arms (30� 5� 0.25 cm) and two enclosed arms

(30� 5� 15 cm), extending from a central platform

(5� 5 cm) and arranged such that two pairs of identical arms

were opposite to each other. The apparatus was raised to a

height of 50 cm above floor level. The maze floor was

constructed from black Plexiglas and the walls from clear

Plexiglas. At the beginning of the test, eachmouse was placed

on the central platform facing an enclosed arm. After the test

(5 min), the maze was carefully cleaned with wet tissue paper

(10% ethanol solution). Tests were carried out during the light

period (1:00–5:00 p.m.). Mouse behavior was filmed under

red light illumination (15W) by using a video camera located

100 cm above the maze. The conventional spatial–temporal

measures were the number of entries (all four paws on open or

enclosed arms and expressed as percentage of total entries),

the time spent on open or enclosed arms (expressed as

percentage of closed + open arm time spent), and the time

on the central platform. Ethologically derived measures were

grooming, rearing, stretched attend postures (SAP), head

dipping (HD), and defecation as an emotionally related

parameter (Rodgers and Dalvi, 1997).

2.6. Experimental procedures

In Experiment 1, mice were treated with the AE of

C. glazioui (0.25, 0.5, and 1.0 g/kg po) and 1 h afterwards

they were submitted to the plus-maze test for 5 min. Mice

treated with either diazepam (1 mg/kg ip) or water (0.5 ml po)

were the positive and negative control, respectively.

Fig. 3. Effect of the oral treatment with repeated doses (three doses over 24 h)

of the Fbut obtained from the AE of C. glazioui Sneth on plus-maze test

performance in mice. Percentage of entries and time spent in the open arms

(open/total� 100) is shown. Fbut was administered per os. Bars and vertical

lines represent the means and S.E.M. of each group. **P< .01; *P < .05

compared to control groups (ANOVA followed by Bonferroni’s test).

Table 4

Behavioral parameters recorded in the plus-maze frommice tre1atedwith repeated doses of the Fbut (25–100mg/kg po) obtained from theAE ofC. glaziouiSneth

Plus-maze measures Vehicle Fbut (25 mg/kg) Fbut (50 mg/kg) Fbut (100 mg/kg) F(3,30)

Total arm entries 9.7 ± 1.11 9.9 ± 1.14 11.6 ± 1.50 13.9 ± 2.40 1.487

Closed-arm entries 7.1 ± 1.04 8.2 ± 0.88 6.6 ± 1.11 6.2 ± 0.80 0.4973

Closed-arm time (s) 190.8 ± 11.97 214.8 ± 10.71 169.6 ± 11.37 150.0 ± 24.51 2.887

Central time (s) 78.3 ± 8.91 72.8 ± 8.54 55.3 ± 8.15 46.3 ± 7.32* 3.355

HD 11.5 ± 1.52 6.8 ± 1.03 16.4 ± 3.34 20.8 ± 4.72 4.006

Rearing 12.3 ± 1.25 13.1 ± 2.03 13.9 ± 1.84 11.3 ± 1.96 0.3615

SAP 11.9 ± 1.78 8.8 ± 1.62 10.7 ± 2.98 10.4 ± 1.70 0.438

Grooming 1.0 ± 0.15 1.8 ± 0.59 0.7 ± 0.28 1.4 ± 0.38 1.413

Fecal boli 0.2 ± 0.13 0.1 ± 0.12 0.1 ± 0.14 0.4 ± 0.34 0.4875

Number of animals 10 8 7 9 –

Data are expressed as mean ± S.E.M.

* P< .05 compared to control group; ANOVA followed by Bonferroni’s test.
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In Experiment 2, mice were treated three times with AE

at 24, 7, and 1.5 h before the 5-min test, as proposed by

Porsolt et al. (1977) to evaluate antidepressant drugs.

In the third experiment, mice were treated three times

with either the Fbut or the Faq of the AE of C. glazioui

(25, 50, and 100 mg/kg po), as previously described, and

submitted to the plus-maze test for 5 min.

2.7. Statistics

Data were analyzed by Graphpad INSTAT version 2.05

software and they were presented as mean ± S.E.M. values.

The statistical tests used were the nonpaired Student’s t test

(diazepam data) or one-way ANOVA followed by Bonfer-

roni’s test (AE, Fbut and Faq data). Differences between

experimental groups were considered statistically significant

when P was less than 0.05.

3. Results

3.1. Effect of acute oral treatment with the AE of C. glazioui

The acute treatment with AE did not alter the parameters

evaluated in the plus-maze (P > .05). The frequency of open-

arm entries and time spent on these arms are shown in Fig. 1,

and the other parameters are shown in Table 1. Compared to

the acute treatment group, the positive control (mice treated

with diazepam) spent significantly more time on the open

arms (P < .01) and presented an increased percentage of

entries in these arms (P < .05), as depicted in Fig. 1. These

animals also showed increases in the number of HD, the

number of entries into the enclosed arms, and total entries,

and a reduced number of SAP and time spent on the maze-

enclosed arms, as shown in Table 2. The time spent in the

central platform, grooming behavior, and defecation did not

differ from the vehicle-treated group (Table 2).

3.2. Effect of repeated oral treatment with the AE of

C. glazioui

The animals treated with AE (0.5 and 1.0 g/kg) three

times over a 24-h period increased the number of open-arm

entries (P < .05) although the time spent on these arms was

Fig. 4. Effect of the oral treatment with repeated doses (three doses over 24 h)

of the Faq obtained from the AE of C. glazioui Sneth on plus-maze test

performance in mice. Percentage of entries and time spent in the open arms

(open/total� 100) is shown. Faq was administered per os. Bars and vertical

lines represent the means and S.E.M. of each group. P >.05 compared to

control groups (ANOVA followed by Bonferroni’s test).

Table 5

Behavioral parameters recorded in the plus-maze from mice treated with repeated doses of the Faq (25–100 mg/kg po) obtained from the AE of C. glazioui Sneth

Plus-maze measures Vehicle Faq (25 mg/kg) Faq (50 mg/kg) Faq (100 mg/kg) F(3,36)

Total arm entries 9.5 ± 1.46 11.0 ± 1.45 9.6 ± 1.16 8.6 ± 0.88 0.6098

Closed-arm entries 6.8 ± 1.10 7.5 ± 0.62 6.5 ± 0.93 5.2 ± 0.40 1.356

Closed-arm time (s) 196.9 ± 19.61 173.7 ± 11.36 205.6 ± 15.30 194.4 ± 15.4 0.8099

Central time (s) 72.1 ± 14.30 89.4 ± 10.85 70.5 ± 12.06 58.7 ± 10.53 1.119

HD 11.9 ± 3.20 10.6 ± 1.57 9.7 ± 1.48 15.8 ± 1.78 1.497

Rearing 11.6 ± 1.47 12.7 ± 1.44 13.5 ± 2.54 15.2 ± 1.59 0.6901

SAP 16.9 ± 2.48 16.4 ± 1.96 13.8 ± 1.87 12.6 ± 2.25 0.9244

Grooming 0.9 ± 0.18 0.9 ± 0.25 0.7 ± 0.21 1.9 ± 0.59 2.467

Fecal boli 0.2 ± 0.13 0.5 ± 0.39 0.7 ± 0.21 1.0 ± 0.5 0.9418

Number of animals 10 11 10 9 –

Data are expressed as mean ± S.E.M.

All comparisons were made with ANOVA followed by Bonferroni’s test.
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not changed (P >.05; Fig. 2). The treated mice also spent

less time on the central platform (P < .05) but the other

recorded parameters were not modified by the repeated

treatment (Table 3). The lowest dose (AE 0.25 g/kg) did

not modify any parameter evaluated in the EPM (Fig. 2

and Table 3).

3.3. Effect of repeated oral treatment with the semipurified

fractions of C. glazioui

Mice treated three times with Fbut (25–100 mg/kg)

increased the frequency of open-arm entries (P < .05) and

spent more time on these arms (P < .01; Fig. 3). This dose

also reduced the time spent in the central platform (P < .05;

Table 4). Other behavioral parameters were not modified by

the treatment, as shown in Table 4 (P >.05).

The treatment with Faq (25–100 mg/kg) did not alter

any parameter evaluated in the EPM test. The entries into

and time spent on open arms (P >.05) are shown in Fig. 4.

The other behavioral parameters are presented in Table 5.

4. Discussion

In a previous publication on the central effects of C.

glazioui we showed that long-term treatment with the AE

induces anxiolytic and antidepressant effects in normoten-

sive rats as well as in L-NAME hypertensive rats (Lapa et al.,

1999). The aim of the current study was to further analyze

the anxiolytic-like action of the AE of C. glazioui and its

semipurified fractions. The activity of semipurified fractions

of the active extract was studied in order to guide the future

chemical identification of the active compounds. The

behavioral data showed that the effect of C. glazioui was

not quite evident after a single-dose treatment with AE but a

significant anxiolytic-like activity was observed after the

repeated treatment, a pattern already reported for the hypo-

tensive action (Lapa et al., 1999). Furthermore, it was found

that the anxiolytic-like activity was 5 to 10 times greater in

the Fbut than in AE, indicating the purification of their

active principles.

An anxiolytic-like effect was indicated by the increased

frequency of entries into the open arms of the plus-maze.

This primary index of anxiety is spatiotemporal in nature: it

is reduced by anxiolytic drugs and can be increased by

anxiogenic compounds (Rodgers and Dalvi, 1997). The

decreased time spent on the central platform is another

indication of a reduced ‘decision-making’ behavior. Both

parameters are accepted as reliable indicators of anxiety and

fearfulness (Ramos et al., 1997).

No treatment altered the other behavioral parameters

registered in the plus-maze, including the number of entries

into the enclosed arms, a well accepted measure of loco-

motor activity (Ramos et al., 1997; Rodgers and Dalvi,

1997; Rodgers et al., 1999). These observations also indic-

ate that the anxiolytic-like effect of C. glazioui is quite

selective, and not merely the result of either a general

stimulation of locomotor activity or an exploratory behavior

consequent to the exposure to a novel environment. Essen-

tially, the same reasoning can be applied to the results

obtained using the Fbut of C. glazioui, which also enhanced

the frequency of entries into and the time spent on the open

arms (both anxiolytic-like effects) without affecting the

number of entries into the enclosed arms (locomotor activity

effect). Such a view is reinforced by this compound’s

reported failure to modify motor coordination in the rota-

rod test (Baretta et al., 1998).

Cecropia is rich in flavonoids (Neidlein and Koch, 1980).

Flavonoids with anxiolytic and/or antidepressant activity

have also been described in many plant species used in folk

medicine to depress the CNS. This effect has been ascribed

to their affinity for the central benzodiazepine receptor

(Medina et al., 1993, 1997; Griebel et al., 1999; Paladini

et al., 1999). The two flavonoids orientin and iso-orientin,

isolated from the active Fbut, could be responsible for the

observed anxiolytic-like effect of C. glazioui (Dr. Luce M.

Brandão Torres, personal communication). The mild sed-

ative and anxiolytic effect produced by these compounds

(Okuyama et al., 1996) might be regarded as additional

evidence for the results herein described, although the low

affinity of these flavonoids for the benzodiazepine receptor

in vivo does not fully support the pharmacological action

observed in our experiments. Nevertheless, alternative

explanations can be raised to the underlying mechanisms

of this effect. Since preliminary studies showed an increase

in the hippocampal levels of 5-HT in rats treated with AE

(Lapa et al., 1999), this biochemical effect could be a

plausible explanation to its anxiolytic-like effect and this

hypothesis is presently under investigation. 5-HT1A receptor

agonists, such as buspirone, are also used to treat anxiety

(Lister, 1987; Jordan et al., 1996). Moreover, selective

serotonin reuptake inhibitors, such as fluoxetine, are effect-

ive in treating a wide spectrum of mood disorders including

depression, panic disorder, and anxiety (Kilts, 1994; Rodg-

ers and Dalvi, 1997). Actually, the effects of serotonergic

agents on different anxiety models are controversial (for

review see Griebel, 1995).

Another possibility to explain the anxiolytic-like effect

reported here is the action of some constituents of the AE

from C. glazioui on the voltage-dependent calcium influx

since Fbut and F4, one of its subfractions, blocked both the

[45Ca] influx in a rat uterus ring preparation and the Ca2 +

currents in chromaffin cells from the PC12 cell line (Lapa

et al., 1999). Some calcium channel blockers, such as

nimodipine and nifedipine, can cross the blood–brain barrier

and exert central actions including anxiolytic, anticonvuls-

ant, antidepressant, among other central effects (Raeburn

and Gonzalez, 1988; Soubrié, 1989; Pucilowski, 1992; De

Vry et al., 1997). The exact site at which these compounds

act to achieve their psychotropic and behavioral effects is yet

unknown. However, it should be noted that the hippocampus

has high levels of dihydropyridine receptors (Belleman et al.,

F.F. Rocha et al. / Pharmacology, Biochemistry and Behavior 71 (2002) 183–190188



1983) that amplify the clinical potential of calcium channel

antagonists at the CNS level. This hypothesis on the under-

lying mechanism of action is also under investigation,

although we do not believe it is feasible since the doses of

calcium channel blockers necessary to promote behavioral

changes are generally higher than the doses that produce

other pharmacodynamic effects (Soubrié, 1989).

In summary, the present results demonstrate an anxio-

lytic-like effect of the AE from leaves of C. glazioui Sneth.

The purification process was effective in concentrating the

active principle(s) responsible for the anxiolytic-like action

of C. glazioui since its Fbut was 5 to 10 times more potent

in promoting a similar activity. This anxiolytic-like effect

may involve the serotonergic system or, alternatively, it may

be due to a mechanism involving the blockade of calcium

channels. The exact underlying mechanism of action

remains to be elucidated but the present findings are

important because they validate one of the folk uses of the

C. glazioui as a medicinal plant in Latin America.
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